Wednesday, October 12, 2016

Bewegende Gemiddelde Smoothing In R

Glad data verwyder ewekansige variasie en programme tendense en sikliese komponente Inherent in die versameling van data geneem met verloop van tyd is 'n vorm van ewekansige variasie. Daar bestaan ​​metodes vir die vermindering van van die kansellasie van die effek as gevolg van ewekansige variasie. 'N dikwels gebruikte tegniek in bedryf is glad. Hierdie tegniek, wanneer dit behoorlik toegepas word, blyk duidelik die onderliggende tendens, seisoenale en sikliese komponente. Daar is twee afsonderlike groepe glad metodes Berekening van gemiddelde metodes Eksponensiële Smoothing Metodes Neem gemiddeldes is die eenvoudigste manier om data te stryk Ons sal eers ondersoek sommige gemiddelde metodes, soos die eenvoudige gemiddeld van al die afgelope data. 'N Bestuurder van 'n pakhuis wil weet hoeveel 'n tipiese verskaffer lewer in 1000 dollar eenhede. Hy / sy neem 'n monster van 12 verskaffers, na willekeur, die verkryging van die volgende resultate: Die berekende gemiddelde of gemiddeld van die data 10. Die bestuurder besluit om dit te gebruik as die skatting vir uitgawes van 'n tipiese verskaffer. Is dit 'n goeie of slegte skat Gemiddelde kwadraat fout is 'n manier om te oordeel hoe goed 'n model is Ons sal bereken die gemiddelde kwadraat fout. Die fout ware bedrag wat minus die beraamde bedrag. Die fout vierkant is die fout hierbo, vierkantig. Die SSE is die som van die gekwadreerde foute. Die MSE is die gemiddeld van die kwadraat foute. MSE lei byvoorbeeld Die uitslae is: Fout en gekwadreerde foute Die raming 10 Die vraag ontstaan: kan ons gebruik maak van die gemiddelde inkomste voorspel as ons vermoed dat 'n tendens 'n blik op die grafiek hieronder toon duidelik dat ons nie dit sou doen. Gemiddeld weeg al verlede Waarnemings ewe In opsomming, ons verklaar dat die eenvoudige gemiddelde of gemiddeld van al verlede waarnemings is net 'n nuttige skatting vir vooruitskatting wanneer daar geen tendense. As daar tendense, gebruik verskillende skattings dat die tendens in ag neem. Die gemiddelde weeg al verlede Waarnemings ewe. Byvoorbeeld, die gemiddelde van die waardes 3, 4, 5 is 4. Ons weet natuurlik dat 'n gemiddelde word bereken deur die toevoeging van al die waardes en die som te deel deur die aantal waardes. Nog 'n manier van berekening van die gemiddelde is deur die byvoeging van elke waarde gedeel deur die aantal waardes, of 3/3 4/3 5/3 1 1,3333 1,6667 4. Die vermenigvuldiger 1/3 is die gewig genoem. In die algemeen: bar frac som links (frac regs) x1 links (frac regs) x2,. ,, Links (frac regs) xn. Die (links (frac regs)) is die gewigte en, natuurlik, hulle vat om 1.Moving gemiddeldes in R Na die beste van my wete, nie R nie 'n ingeboude funksie om bewegende gemiddeldes te bereken. Die gebruik van die filter funksie, maar ons kan 'n kort funksie te skryf vir bewegende gemiddeldes: Ons kan dan gebruik maak van die funksie op enige data: MAV (data), of MAV (data, 11) as ons wil 'n verskillende aantal datapunte spesifiseer as die standaard 5 plot werke soos verwag: plot (MAV (data)). Benewens die aantal datapunte waaroor om gemiddelde, kan ons ook die kante argument van die filter funksies te verander: sides2 gebruik beide kante, sides1 gebruik net verlede waardes. Deel hierdie: Post navigasie Kommentaar navigasie Kommentaar navigationMoving gemiddelde en eksponensiële gladstryking modelle As 'n eerste stap in die beweging van buite gemiddelde modelle, ewekansige loop modelle, en lineêre tendens modelle, nonseasonal patrone en tendense kan geëkstrapoleer deur 'n bewegende-gemiddelde of glad model. Die basiese aanname agter gemiddelde en glad modelle is dat die tyd reeks is plaaslik stilstaande met 'n stadig wisselende gemiddelde. Vandaar, neem ons 'n bewegende (plaaslike) gemiddelde om die huidige waarde van die gemiddelde skat en dan gebruik dit as die voorspelling vir die nabye toekoms. Dit kan beskou word as 'n kompromie tussen die gemiddelde model en die ewekansige-stap-sonder-drif-model. Dieselfde strategie gebruik kan word om te skat en ekstrapoleer 'n plaaslike tendens. 'N bewegende gemiddelde is dikwels 'n quotsmoothedquot weergawe van die oorspronklike reeks, want kort termyn gemiddelde het die effek van gladstryking uit die knoppe in die oorspronklike reeks. Deur die aanpassing van die mate van gladstryking (die breedte van die bewegende gemiddelde), kan ons hoop om 'n soort van 'n optimale balans tussen die prestasie van die gemiddelde en die stogastiese wandeling modelle slaan. Die eenvoudigste soort gemiddelde model is die. Eenvoudige (ewe-geweeg) Moving Average: Die voorspelling vir die waarde van Y op tyd T1 wat gemaak word op tydstip t is gelyk aan die eenvoudige gemiddelde van die mees onlangse m waarnemings: (hier en elders sal ek die simbool 8220Y-hat8221 gebruik om op te staan vir 'n voorspelling van die tyd reeks Y gemaak op die vroegste moontlike voor datum deur 'n gegewe model.) Hierdie gemiddelde is gesentreer op tydperk t (M1) / 2, wat impliseer dat die skatting van die plaaslike gemiddelde sal neig om agter die werklike waarde van die plaaslike gemiddelde met sowat (M1) / 2 periodes. So, sê ons die gemiddelde ouderdom van die data in die eenvoudige bewegende gemiddelde is (M1) / 2 met betrekking tot die tydperk waarvoor die voorspelling is bereken: dit is die hoeveelheid tyd waarop voorspellings sal neig om agter draaipunte in die data. Byvoorbeeld, as jy gemiddeld die afgelope 5 waardes, sal die voorspellings wees oor 3 periodes laat in reaksie op draaipunte. Let daarop dat indien M1, die eenvoudige bewegende gemiddelde (SMA) model is soortgelyk aan die ewekansige loop model (sonder groei). As m is baie groot (vergelykbaar met die lengte van die skatting tydperk), die SMA model is gelykstaande aan die gemiddelde model. Soos met enige parameter van 'n voorspelling model, is dit gebruiklik om die waarde van k te pas ten einde die beste quotfitquot om die data, dit wil sê die kleinste voorspelling foute gemiddeld behaal. Hier is 'n voorbeeld van 'n reeks wat blykbaar ewekansige skommelinge toon om 'n stadig-wisselende gemiddelde. In die eerste plek kan probeer om dit aan te pas met 'n ewekansige loop model, wat gelykstaande is aan 'n eenvoudige bewegende gemiddelde van 1 kwartaal: Die ewekansige loop model reageer baie vinnig om veranderinge in die reeks, maar sodoende dit tel baie van die quotnoisequot in die data (die ewekansige skommelinge) asook die quotsignalquot (die plaaslike gemiddelde). As ons eerder probeer 'n eenvoudige bewegende gemiddelde van 5 terme, kry ons 'n gladder lyk stel voorspellings: Die 5 termyn eenvoudige bewegende gemiddelde opbrengste aansienlik kleiner foute as die ewekansige loop model in hierdie geval. Die gemiddelde ouderdom van die data in hierdie voorspelling is 3 ((51) / 2), sodat dit is geneig om agter draaipunte met sowat drie periodes. (Byvoorbeeld, blyk 'n afswaai het plaasgevind by tydperk 21, maar die voorspellings nie omdraai tot verskeie tydperke later.) Let daarop dat die langtermyn-voorspellings van die SMA model is 'n horisontale reguit lyn, net soos in die ewekansige loop model. So, die SMA model veronderstel dat daar geen neiging in die data. Maar, terwyl die voorspellings van die ewekansige loop model is eenvoudig gelyk aan die laaste waargenome waarde, die voorspellings van die SMA model is gelykstaande aan 'n geweegde gemiddelde van die afgelope waardes. Die vertroue perke bereken deur Stat Graphics vir die langtermyn-voorspellings van die eenvoudige bewegende gemiddelde nie groter as die vooruitskatting horison styg kry. Dit is natuurlik nie korrek Ongelukkig is daar geen onderliggende statistiese teorie wat ons vertel hoe die vertrouensintervalle behoort te brei vir hierdie model. Dit is egter nie te moeilik om empiriese ramings van die vertroue perke vir die langer-horison voorspellings te bereken. Byvoorbeeld, kan jy die opstel van 'n sigblad waarop die SMA model sal gebruik word om 2 stappe vooruit, 3 stappe vooruit, ens binne die historiese data monster voorspel. Jy kan dan bereken die monster standaardafwykings van die foute op elke voorspelling horison, en dan bou vertrouensintervalle vir langer termyn voorspellings deur optelling en aftrekking veelvoude van die toepaslike standaard afwyking. As ons probeer om 'n 9-termyn eenvoudige bewegende gemiddelde, kry ons selfs gladder voorspellings en meer van 'n sloerende uitwerking: Die gemiddelde ouderdom is nou 5 periodes ((91) / 2). As ons 'n 19-termyn bewegende gemiddelde te neem, die gemiddelde ouderdom toeneem tot 10: Let daarop dat, inderdaad, is die voorspellings nou agter draaipunte met sowat 10 periodes. Watter bedrag van smoothing is die beste vir hierdie reeks Hier is 'n tabel wat hulle dwaling statistieke vergelyk, ook met 'n 3-gemiddelde: Model C, die 5-termyn bewegende gemiddelde, lewer die laagste waarde van RMSE deur 'n klein marge oor die 3 - term en 9 termyn gemiddeldes, en hul ander statistieke is byna identies. So, onder modelle met 'n baie soortgelyke fout statistieke, kan ons kies of ons 'n bietjie meer responsiewe ingesteldheid of 'n bietjie meer gladheid in die voorspellings sou verkies. (Terug na bo.) Browns Eenvoudige Eksponensiële Smoothing (eksponensieel geweeg bewegende gemiddelde) Die eenvoudige bewegende gemiddelde model hierbo beskryf het die ongewenste eienskap dat dit behandel die laaste k Waarnemings ewe en heeltemal ignoreer al voorafgaande waarnemings. Intuïtief, moet afgelope data verdiskonteer in 'n meer geleidelike mode - byvoorbeeld, die mees onlangse waarneming moet 'n bietjie meer gewig kry as 2 mees onlangse, en die 2de mees onlangse moet 'n bietjie meer gewig as die 3 mees onlangse kry, en so aan. Die eenvoudige eksponensiële gladstryking (SES) model accomplishes hierdie. Laat 945 dui n quotsmoothing constantquot ( 'n getal tussen 0 en 1). Een manier om die model te skryf is om 'n reeks L dat die huidige vlak (dit wil sê die plaaslike gemiddelde waarde) van die reeks verteenwoordig as geraamde van data tot op hede te definieer. Die waarde van L op tydstip t is rekursief bereken uit sy eie vorige waarde soos volg: Dus, die huidige stryk waarde is 'n interpolasie tussen die vorige stryk waarde en die huidige waarneming, waar 945 kontroles die nabyheid van die geïnterpoleerde waarde tot die mees onlangse waarneming. Die voorspelling vir die volgende tydperk is eenvoudig die huidige stryk waarde: anders gestel ons kan die volgende voorspelling direk in terme van vorige voorspellings en vorige waarnemings uit te druk, in enige van die volgende ekwivalent weergawes. In die eerste weergawe, die voorspelling is 'n interpolasie tussen vorige skatting en vorige waarneming: In die tweede weergawe, is die volgende voorspelling verkry deur die aanpassing van die vorige skatting in die rigting van die vorige fout deur 'n breukdeel bedrag 945. is die fout gemaak by tyd t. In die derde weergawe, die voorspelling is 'n eksponensieel geweeg (dit wil sê afslag) bewegende gemiddelde met afslag faktor 1- 945: Die interpolasie weergawe van die voorspelling formule is die eenvoudigste om te gebruik as jy die uitvoering van die model op 'n spreadsheet: dit pas in 'n enkele sel en bevat selverwysings verwys na die vorige skatting, die vorige waarneming, en die sel waar die waarde van 945 gestoor. Let daarop dat indien 945 1, die SES model is gelykstaande aan 'n ewekansige loop model (sonder groei). As 945 0, die SES model is gelykstaande aan die gemiddelde model, met die veronderstelling dat die eerste stryk waarde gelyk aan die gemiddelde is ingestel. (Terug na bo.) Die gemiddelde ouderdom van die data in die eenvoudige eksponensiële-glad voorspelling is 1/945 relatief tot die tydperk waarvoor die voorspelling is bereken. (Dit is nie veronderstel duidelik te wees, maar dit kan maklik aangetoon deur die evaluering van 'n oneindige reeks.) Dus, die eenvoudige bewegende gemiddelde voorspelling is geneig om agter draaipunte met sowat 1/945 periodes. Byvoorbeeld, wanneer 945 0.5 die lag is 2 periodes wanneer 945 0.2 die lag is 5 periodes wanneer 945 0.1 die lag is 10 periodes, en so aan. Vir 'n gegewe gemiddelde ouderdom (bv bedrag van lag), die eenvoudige eksponensiële gladstryking (SES) voorspelling is 'n bietjie beter as die eenvoudige bewegende gemiddelde (SMA) voorspel, want dit plaas relatief meer gewig op die mees onlangse waarneming --i. e. dit is 'n bietjie meer quotresponsivequot om veranderinge voorkom in die onlangse verlede. Byvoorbeeld, 'n SMA model met 9 terme en 'n SES model met 945 0.2 beide het 'n gemiddelde ouderdom van 5 vir die data in hul voorspellings, maar die SES model plaas meer gewig op die laaste 3 waardes as wel die SMA model en by die Terselfdertyd is dit doesn8217t heeltemal 8220forget8221 oor waardes meer as 9 tydperke oud was, soos getoon in hierdie grafiek: nog 'n belangrike voordeel van die SES model die SMA model is dat die SES model maak gebruik van 'smoothing parameter wat voortdurend veranderlike, so dit kan maklik new deur die gebruik van 'n quotsolverquot algoritme om die gemiddelde minimum te beperk kwadraat fout. Die optimale waarde van 945 in die SES model vir hierdie reeks blyk te wees 0,2961, soos hier gewys word: die gemiddelde ouderdom van die data in hierdie voorspelling is 1 / 0,2961 3.4 tydperke, wat soortgelyk is aan dié van 'n 6-termyn eenvoudige bewegende gemiddelde. Die langtermyn-voorspellings van die SES model is 'n horisontale reguit lyn. soos in die SMA model en die ewekansige loop model sonder groei. Let egter daarop dat die vertrouensintervalle bereken deur Stat Graphics nou divergeer in 'n redelike aantreklike mode, en dat hulle aansienlik nouer as die vertrouensintervalle vir die ewekansige loop model. Die SES model veronderstel dat die reeks is 'n bietjie quotmore predictablequot as wel die ewekansige loop model. 'N SES model is eintlik 'n spesiale geval van 'n ARIMA model. sodat die statistiese teorie van ARIMA modelle bied 'n goeie basis vir die berekening van vertrouensintervalle vir die SES model. In die besonder, 'n SES model is 'n ARIMA model met een nonseasonal verskil, 'n MA (1) termyn, en geen konstante term. andersins bekend as 'n quotARIMA (0,1,1) model sonder constantquot. Die MA (1) koëffisiënt in die ARIMA model stem ooreen met die hoeveelheid 1- 945 in die SES model. Byvoorbeeld, as jy 'n ARIMA (0,1,1) model inpas sonder konstante om die reeks te ontleed hier, die beraamde MA (1) koëffisiënt blyk te wees 0,7029, wat byna presies 'n minus 0,2961. Dit is moontlik om die aanname van 'n nie-nul konstante lineêre tendens voeg by 'n SES model. Om dit te doen, net 'n ARIMA model met een nonseasonal verskil en 'n MA (1) termyn met 'n konstante, dit wil sê 'n ARIMA (0,1,1) model met 'n konstante spesifiseer. Die langtermyn-voorspellings sal dan 'n tendens wat gelyk is aan die gemiddelde tendens waargeneem oor die hele skatting tydperk is. Jy kan dit nie doen in samewerking met seisoenale aanpassing, omdat die aanpassing opsies seisoenale is afgeskakel wanneer die model tipe is ingestel op ARIMA. Jy kan egter 'n konstante langtermyn eksponensiële tendens om 'n eenvoudige eksponensiële gladstryking model voeg (met of sonder seisoenale aanpassing) deur gebruik te maak van die opsie inflasie-aanpassing in die vooruitskatting prosedure. Die toepaslike quotinflationquot (persentasie groei) koers per periode kan geskat word as die helling koëffisiënt in 'n lineêre tendens model toegerus om die data in samewerking met 'n natuurlike logaritme transformasie, of dit kan op grond van ander, onafhanklike inligting oor die langtermyn groeivooruitsigte . (Terug na bo.) Browns Lineêre (dws dubbel) Eksponensiële glad die SMA modelle en SES modelle aanvaar dat daar geen tendens van enige aard in die data (wat gewoonlik OK of ten minste nie-te-sleg vir 1- stap-ahead voorspellings wanneer die data is relatief raserig), en hulle kan verander word om 'n konstante lineêre tendens inkorporeer soos hierbo getoon. Wat van kort termyn tendense As 'n reeks vertoon 'n wisselende koers van groei of 'n sikliese patroon wat uitstaan ​​duidelik teen die geraas, en as daar 'n behoefte aan meer as 1 tydperk wat voorlê voorspel, dan skatting van 'n plaaslike tendens kan ook wees n probleem. Die eenvoudige eksponensiële gladstryking model veralgemeen kan word na 'n lineêre eksponensiële gladstryking (LES) model wat plaaslike begrotings van beide vlak en tendens bere te kry. Die eenvoudigste-time wisselende tendens model is Browns lineêr eksponensiële gladstryking model, wat twee verskillende reëlmatige reeks wat op verskillende punte gesentreer in die tyd gebruik. Die vooruitskatting formule is gebaseer op 'n ekstrapolasie van 'n streep deur die twee sentrums. ( 'N meer gesofistikeerde weergawe van hierdie model, Holt8217s, word hieronder bespreek.) Die algebraïese vorm van Brown8217s lineêr eksponensiële gladstryking model, soos dié van die eenvoudige eksponensiële gladstryking model, uitgedruk kan word in 'n aantal verskillende maar ekwivalente vorms. Die quotstandardquot vorm van hierdie model word gewoonlik uitgedruk as volg: Laat S dui die enkel-stryk reeks verkry deur die toepassing van eenvoudige eksponensiële gladstryking om reeks Y. Dit is, is die waarde van S op tydperk t gegee word deur: (Onthou dat, onder eenvoudige eksponensiële gladstryking, dit sou die voorspelling vir Y by tydperk T1 wees) Dan Squot dui die dubbel-stryk reeks verkry deur die toepassing van eenvoudige eksponensiële gladstryking (met behulp van dieselfde 945) tot reeks S:. ten slotte, die voorspelling vir Y tk. vir enige kgt1, word gegee deur: Dit lewer e 1 0 (dit wil sê kul n bietjie, en laat die eerste skatting gelyk wees aan die werklike eerste waarneming), en e 2 Y 2 8211 Y 1. waarna voorspellings gegenereer met behulp van die vergelyking hierbo. Dit gee dieselfde toegerus waardes as die formule gebaseer op S en S indien laasgenoemde is begin met behulp van S 1 S 1 Y 1. Hierdie weergawe van die model gebruik word op die volgende bladsy wat 'n kombinasie van eksponensiële gladstryking met seisoenale aanpassing illustreer. Holt8217s Lineêre Eksponensiële Smoothing Brown8217s LES model bere plaaslike begrotings van vlak en tendens deur glad die onlangse data, maar die feit dat dit nie so met 'n enkele glad parameter plaas 'n beperking op die data patrone wat dit in staat is om aan te pas: die vlak en tendens word nie toegelaat om wissel op onafhanklike tariewe. Holt8217s LES model spreek hierdie kwessie deur die insluiting van twee glad konstantes, een vir die vlak en een vir die tendens. Te eniger tyd t, soos in Brown8217s model, die daar is 'n skatting L t van die plaaslike vlak en 'n skatting T t van die plaaslike tendens. Hier is hulle rekursief bereken vanaf die waarde van Y op tydstip t en die vorige raming van die vlak en tendens waargeneem deur twee vergelykings wat eksponensiële gladstryking afsonderlik van toepassing op hulle. As die geskatte vlak en tendens op tydstip t-1 is L t82091 en T t-1. onderskeidelik, dan is die voorspelling vir Y tshy wat op tydstip t-1 sal gemaak is gelyk aan L t-1 T T-1. Wanneer die werklike waarde is waargeneem, is die opgedateer skatting van die vlak rekursief bereken deur interpol tussen Y tshy en sy voorspelling, L t-1 T T-1, die gebruik van gewigte van 945 en 1- 945. Die verandering in die geskatte vlak, naamlik L t 8209 L t82091. geïnterpreteer kan word as 'n lawaaierige meting van die tendens op tydstip t. Die opgedateer skatting van die tendens is dan rekursief bereken deur interpol tussen L t 8209 L t82091 en die vorige skatting van die tendens, T t-1. die gebruik van gewigte van 946 en 1-946: Die interpretasie van die tendens-glad konstante 946 is soortgelyk aan dié van die vlak glad konstante 945. Models met klein waardes van 946 aanvaar dat die tendens verander net baie stadig met verloop van tyd, terwyl modelle met groter 946 aanvaar dat dit vinniger is om te verander. 'N Model met 'n groot 946 is van mening dat die verre toekoms is baie onseker, omdat foute in die tendens-skatting word baie belangrik wanneer voorspel meer as een tydperk wat voorlê. (Terug na bo.) Die smoothing konstantes 945 en 946 kan in die gewone manier word beraam deur die vermindering van die gemiddelde kwadraat fout van die 1-stap-ahead voorspellings. Wanneer dit in Stat Graphics gedoen, die skattings uitdraai om te wees 945 0.3048 en 946 0,008. Die baie klein waarde van 946 beteken dat die model veronderstel baie min verandering in die tendens van een tydperk na die volgende, so basies hierdie model is besig om 'n langtermyn-tendens skat. Volgens analogie met die idee van die gemiddelde ouderdom van die data wat gebruik word in die skatte van die plaaslike vlak van die reeks, die gemiddelde ouderdom van die data wat gebruik word in die skatte van die plaaslike tendens is eweredig aan 1/946, hoewel nie presies gelyk aan Dit. In hierdie geval is dit blyk 1 / 0,006 125. Dit isn8217t n baie presiese aantal sover die akkuraatheid van die skatting van 946 isn8217t regtig 3 desimale plekke te wees, maar dit is van dieselfde algemene orde van grootte as die steekproefgrootte van 100 , so hierdie model is gemiddeld oor 'n hele klomp van die geskiedenis in die skatte van die tendens. Die voorspelling plot hieronder toon dat die LES model skat 'n effens groter plaaslike tendens aan die einde van die reeks as die konstante tendens geskat in die SEStrend model. Ook waarvan die beraamde waarde van 945 is byna identies aan die een wat deur die pas van die SES model met of sonder tendens, so dit is amper dieselfde model. Nou, doen hierdie lyk redelike voorspellings vir 'n model wat veronderstel is om te beraming 'n plaaslike tendens As jy hierdie plot 8220eyeball8221, dit lyk asof die plaaslike tendens afwaarts gedraai aan die einde van die reeks: Wat het die parameters van hierdie model gebeur is beraam deur die vermindering van die kwadraat fout van 1-stap-ahead voorspellings, nie langer termyn voorspellings, in welke geval die tendens 'n groot verskil doesn8217t maak. As alles wat jy is op soek na is 1-stap-ahead foute, is jy nie sien die groter prentjie van tendense oor (sê) 10 of 20 periodes. Ten einde hierdie model meer in harmonie te kry met ons oogbal ekstrapolasie van die data, kan ons met die hand die tendens-glad konstante pas sodat dit 'n korter basislyn vir tendens skatting. Byvoorbeeld, as ons kies om te stel 946 0.1, dan is die gemiddelde ouderdom van die gebruik in die skatte van die plaaslike tendens data is 10 periodes, wat beteken dat ons die gemiddeld van die tendens oor daardie laaste 20 periodes of so. Here8217s wat die voorspelling plot lyk asof ons '946 0.1 terwyl 945 0.3. Dit lyk intuïtief redelike vir hierdie reeks, maar dit is waarskynlik gevaarlik om hierdie tendens te ekstrapoleer nie meer as 10 periodes in die toekoms. Wat van die fout statistieke Hier is 'n model vergelyking vir die twee modelle hierbo asook drie SES modelle getoon. Die optimale waarde van 945.Vir die SES model is ongeveer 0,3, maar soortgelyke resultate (met 'n bietjie meer of minder 'n responsiewe ingesteldheid, onderskeidelik) verkry met 0,5 en 0,2. (A) Holts lineêre exp. glad met alfa 0,3048 en beta 0,008 (B) Holts lineêre exp. glad met alfa 0,3 en beta 0,1 (C) Eenvoudige eksponensiële gladstryking met alfa 0,5 (D) Eenvoudige eksponensiële gladstryking met alfa 0,3 (E) Eenvoudige eksponensiële gladstryking met alfa 0,2 hul statistieke is byna identies, so ons can8217t regtig die keuse te maak op die basis van 1-stap-ahead voorspelling foute binne die data monster. Ons het om terug te val op ander oorwegings. As ons glo dat dit sinvol om die huidige tendens skatting van wat die afgelope 20 periodes of so gebeur baseer, kan ons 'n saak vir die LES model met 945 0.3 en 946 0.1 maak. As ons wil hê agnostikus te wees oor die vraag of daar 'n plaaslike tendens, dan een van die SES modelle makliker om te verduidelik kan wees en sou ook vir meer middel-of-the-road voorspellings vir die volgende 5 of 10 periodes. (Terug na bo.) Watter tipe tendens-ekstrapolasie die beste: horisontale of lineêre empiriese bewyse dui daarop dat, indien die data is reeds aangepas (indien nodig) vir inflasie, dan is dit dalk onverstandig om kort termyn lineêre ekstrapoleer wees tendense baie ver in die toekoms. Tendense duidelik vandag mag verslap in die toekoms as gevolg van uiteenlopende oorsake soos produk veroudering, toenemende mededinging en sikliese afswaai of opwaartse fases in 'n bedryf. Om hierdie rede, eenvoudige eksponensiële gladstryking voer dikwels beter out-of-monster as wat dit andersins word verwag, ten spyte van sy quotnaivequot horisontale tendens ekstrapolasie. Gedempte tendens veranderinge van die lineêre eksponensiële gladstryking model word ook dikwels gebruik in die praktyk om 'n aantekening van konserwatisme in te voer in die tendens projeksies. Die gedempte-tendens LES model geïmplementeer kan word as 'n spesiale geval van 'n ARIMA model, in die besonder, 'n ARIMA (1,1,2) model. Dit is moontlik om vertrouensintervalle rondom langtermyn voorspellings wat deur eksponensiële gladstryking modelle bereken deur die oorweging van hulle as spesiale gevalle van ARIMA modelle. (Pasop: nie alle sagteware bereken vertrouensintervalle vir hierdie modelle korrek.) Die breedte van die vertrouensintervalle hang af van (i) die RMS fout van die model, (ii) die tipe glad (eenvoudige of lineêr) (iii) die waarde (s) van die smoothing konstante (s) en (iv) die aantal periodes voor jy voorspel. In die algemeen, die tussenposes versprei vinniger as 945 kry groter in die SES model en hulle uitgebrei, sodat baie vinniger as lineêre, eerder as eenvoudige smoothing gebruik. Hierdie onderwerp word verder in die ARIMA modelle deel van die notas bespreek. (Terug na bo.) 5.2 Smoothing Tyd Reeks Smoothing word gewoonlik gedoen om ons te help patrone beter te sien, tendense byvoorbeeld in tydreekse. Oor die algemeen glad die onreëlmatige ruheid om 'n duideliker sein sien. Vir seisoenale data, kan ons glad die seisoen, sodat ons die tendens kan identifiseer. Glad nie die geval is voorsien ons met 'n model, maar dit kan 'n goeie eerste stap in die beskrywing van die verskillende komponente van die reeks wees. Die term filter word soms gebruik om 'n glad prosedure beskryf. Byvoorbeeld, as die stryk waarde vir 'n bepaalde tyd word bereken as 'n lineêre kombinasie van waarnemings vir omliggende keer, dit kan gesê word dat weve toegepas n lineêre filter om die data (nie dieselfde as om te sê die resultaat is 'n reguit lyn, deur die manier). Die tradisionele gebruik van die term bewegende gemiddelde is dat by elke punt in die tyd wat ons bepaal (moontlik geweegde) gemiddeldes van waargenome waardes wat 'n bepaalde tyd omring. Byvoorbeeld, op tyd t. 'n gesentreerde bewegende gemiddelde lengte 3 met gelyke gewigte sal die gemiddelde waardes by tye t -1. t. en T1. Om seisoenaliteit weg te neem van 'n reeks, sodat ons kan beter sien tendens, sou ons 'n bewegende gemiddelde met 'n lengte seisoenale span gebruik. So in die stryk reeks, het elk stryk waarde is gemiddeld oor alle seisoene. Dit kan gedoen word deur te kyk na 'n eensydige bewegende gemiddelde waarin jy gemiddeld alle waardes vir die vorige jaar se data of 'n gesentreerde bewegende gemiddelde waarin jy waardes gebruik beide voor en na die huidige tyd. Vir kwartaallikse data, byvoorbeeld, ons kan 'n reëlmatige waarde vir tyd t as definieer (x t x t-1 x T-2 x t-3) / 4, die gemiddelde van hierdie tyd en die vorige 3/4. In R-kode sal dit 'n eensydige filter wees. A-gesentreerde bewegende gemiddelde skep 'n bietjie van 'n probleem wanneer ons 'n ewe getal van tydperke in die seisoenale span (soos ons gewoonlik doen). Om weg te stryk seisoenaliteit in kwartaallikse data. ten einde tendens te identifiseer, die gewone konvensie is om die bewegende gemiddelde stryk op tydstip t is om weg te stryk seisoenaliteit in maandelikse data gebruik. ten einde tendens te identifiseer, die gewone konvensie is om die bewegende gemiddelde stryk op tydstip t is wat deur gebruik gewig 1/24 pas ons om waardes by tye T6 en T6 en gewig 12/01 alle waardes te alle tye tussen T5 en T5. In die opdrag R filter, sowel spesifiseer 'n twee-sided filter wanneer ons wil waardes wat kom beide voor en na die tyd waarvoor was glad gebruik. Let daarop dat op bladsy 71 van ons boek, die skrywers gelyk gewigte van toepassing oor 'n gesentreerde seisoenale bewegende gemiddelde. Dis okay ook. Byvoorbeeld, kan 'n kwartaallikse gladder word stryk op tydstip t is frac x frac x frac xt frac x frac x A maandelikse gladder kan 'n gewig van 1/13 van toepassing op alle waardes van tye t-6 tot T6. Die kode van die skrywers gebruik op bladsy 72 maak gebruik van 'n rep bevel dat 'n waarde herhaal 'n sekere aantal kere. Hulle hoef te gebruik die parameter filter binne die opdrag filter. Voorbeeld 1 Kwartaallikse Beer Produksie in Australië in beide Les 1 en Les 4, het ons gekyk na 'n reeks kwartaallikse bier produksie in Australië. Die volgende R-kode skep 'n reëlmatige reeks waarmee ons sien die tendens patroon, en plotte hierdie tendens patroon op dieselfde grafiek as die tyd reeks. Die tweede opdrag skep en stoor die stryk reeks in die voorwerp genoem trendpattern. Let daarop dat binne die opdrag filter, die parameter genoem filter gee die koëffisiënte vir ons glad en kante 2 veroorsaak dat 'n gesentreerde glad te bereken. beerprod skandering (beerprod. dat) trendpattern filter (beerprod, filter c (1/8, 1/4, 1/4, 1/4, 1/8), sides2) plot (beerprod, Tipe B, hoof bewegende gemiddelde jaarlikse tendens ) lyne (trendpattern) Hier is die resultaat: Ons kan die tendens patroon van die datawaardes trek om 'n beter blik op die seisoen kry. Hier is hoe dit sou gebeur: seasonals beerprod - trendpattern plot (seasonals, Tipe B, hoof seisoenale patroon vir bier produksie) Die resultaat volg: Nog 'n moontlikheid vir glad reeks tendens sien is die eensydige filter trendpattern2 filter (beerprod, filter c (1/4, 1/4, 1/4, 1/4), sides1) Met hierdie, die stryk waarde is die gemiddeld van die afgelope jaar. Voorbeeld 2. VS Maandeliks werkloosheid in die huiswerk vir week 4 jy kyk na 'n maandelikse reeks VSA Werkloosheid vir 1948-1978. Hier is 'n smoothing gedoen om te kyk na die tendens. trendunemployfilter (werkloos, filterc (1 / 24,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12,1 / 12, 1 / 12,1 / 24), sides2) trendunemploy ts (trendunemploy, begin c (1948,1), freq 12) plot (trendunemploy, mainTrend in die VSA Werkloosheid, 1948-1978, XLab Jaar) Slegs die reëlmatige tendens is geplot. Die tweede opdrag identifiseer die kalender tyd kenmerke van die reeks. Dit maak die plot het 'n meer betekenisvolle as. Die plot volg. Vir nie-seisoenale reeks, Arent jy gebind te stryk oor 'n spesifieke span. Vir glad moet jy eksperimenteer met bewegende gemiddeldes van verskillende strek. Diegene strek van die tyd kan relatief kort wees. Die doel is om af te klop die ruwe kante om te sien wat tendens of patroon daar mag wees. Ander Smoothing Metodes (Afdeling 2.4) Afdeling 2.4 beskryf verskeie gesofistikeerde en nuttige alternatiewe vir bewegende gemiddelde glad. Die besonderhede kan oppervlakkig lyk, maar dis okay, want ons dont wil kry vasgeval in baie besonderhede vir diegene metodes. Van die alternatiewe metodes in Afdeling 2.4 beskryf, kan lowess (plaaslik geweeg regressie) die mees algemeen gebruik. Voorbeeld 2 Voortgesette Die volgende plot is glad tendens lyn vir die VSA Werkloosheid reeks, bevind die gebruik van 'n lowess gladder waarin 'n aansienlike bedrag (2/3) het bygedra tot elke stryk skatting. Let daarop dat hierdie stryk die reeks meer aggressief as die bewegende gemiddelde. Die opdragte gebruik is werkloos ts (werkloos, begin c (1948,1), freq12) plot (lowess (werkloos, f 2/3), hoof Lowess smoothing van die Amerikaanse Werkloosheid Trend) Enkellopend Eksponensiële glad die basiese vooruitskatting vergelyking vir enkele eksponensiële gladstryking Daar word dikwels gegee as hoed Alpha xt (1-alfa) hoed t teks Ons voorspel die waarde van x in die tyd T1 'n geweegde kombinasie van die waargeneem waarde op tydstip t en die geskatte waarde op tydstip t wees. Hoewel die metode 'n glad metode, staan ​​bekend as die hoofsaaklik gebruik word vir 'n kort termyn vooruitskatting. Die waarde van die smoothing konstante genoem. Vir een of ander rede, 0.2 is 'n gewilde verstek keuse van programme. Dit plaas 'n gewig van 0,2 op die mees onlangse waarneming en 'n gewig van 1 0,2 0,8 op die mees onlangse skatting. Met 'n relatief klein waarde van, sal die smoothing relatief meer uitgebreide wees. Met 'n relatief groot waarde van die smoothing is relatief minder uitgebreide as meer gewig op die waargenome waarde gestel sal word. Dit is eenvoudig 'n stap vorentoe vooruitskatting metode wat met die eerste oogopslag blyk 'n model vir die data nie nodig. Trouens, hierdie metode is soortgelyk aan die gebruik van 'n ARIMA (0,1,1) model met geen konstante. Die optimale proses is om 'n ARIMA (0,1,1) model om die waargenome dataset pas en gebruik die resultate om die waarde van vas. Dit is 'n optimale in die sin van die skep van die beste vir die reeds waargeneem data. Alhoewel die doel is glad en 'n stap vorentoe voorspel, die ekwivalensie van die ARIMA (0,1,1) model bring 'n goeie punt. Ons behoort nie blindelings toepassing eksponensiële gladstryking omdat die onderliggende proses nie goed kan beskryf deur 'n ARIMA (0,1,1). ARIMA (0,1,1) en Eksponensiële Smoothing Ekwivalensie Oorweeg 'n ARIMA (0,1,1) met gemiddelde 0 vir die eerste verskille, xt - x t-1: begin hoed amp amp xt theta1 wt amp amp xt theta1 (xt - hat t) amp amp (1 theta1) xt - theta1hat geneig. As ons toelaat dat (1 1) en dus - (1) 1, sien ons die ekwivalensie vergelyking (1) hierbo. Hoekom die metode staan ​​bekend as eksponensiële Smoothing Dit lewer die volgende: begin hoed amp amp Alpha xt (1-alfa) Alpha X (1-alfa) hoed amp amp Alpha xt alfa (1-alfa) x (1-alfa) 2hat einde voort in hierdie mode deur agtereenvolgens vervang vir die geskatte waarde aan die regterkant van die vergelyking. Dit lei tot: hoed Alpha xt alfa (1-alfa) x alfa (1-alfa) 2 x kolle alfa (1-alfa) JX kolle alfa (1-alfa) x1 teks vergelyking 2 toon dat die voorspelde waarde is 'n geweegde gemiddelde van alle afgelope waardes van die reeks, met eksponensieel verander gewigte soos ons beweeg terug in die reeks. Optimale Eksponensiële Smoothing in R Eintlik het ons net pas 'n ARIMA (0,1,1) om die data en bepaal die koëffisiënt. Ons kan die pas van die gladde ondersoek deur 'n vergelyking van die voorspelde waardes van die werklike reeks. Eksponensiële gladstryking is geneig om meer as 'n voorspelling instrument as 'n ware gladder te gebruik, so soek om te sien of ons 'n goeie passing. Voorbeeld 3. N 100 maandelikse waarnemings van die logaritme van 'n olie-prysindeks in die Verenigde State van Amerika. Die data-reeks is: 'n ARIMA (0,1,1) pas in R het 'n MA (1) koëffisiënt 0,3877. So (1 1) 1,3877 en 1- -0,3877. Die eksponensiële gladstryking vooruitskatting vergelyking hoed 1.3877xt - 0.3877hat t Ten tye 100, die waargenome waarde van die reeks is x 100 0,86601. Die voorspelde waarde vir die reeks op daardie tydstip is dus die voorspelling vir die tyd 101 is hoed 1.3877x - 0.3877hat 1,3877 (0,86601) -0,3877 (0,856789) 0,8696 aanleiding is hoe goed die gladder pas die reeks. Dit is 'n goeie passing. Dis 'n goeie teken vir vooruitskatting, die hoofdoel van hierdie gladder. Hier is die instruksies wat gebruik word om die uitset vir hierdie voorbeeld te genereer: oilindex skandering (oildata. dat) plot (oilindex, Tipe B, hoof log olie-indeks Series) expsmoothfit ARIMA (oilindex, sodat c (0,1,1)) expsmoothfit om die ARIMA resultate sien predicteds oilindex - expsmoothfitresiduals voorspelde waardes plot (oilindex, typeb, hoof eksponensiële smoothing van log olie-indeks) lyne (predicteds) 1.3877oilindex100-0.3877predicteds100 voorspelling vir tyd 101 Double eksponensiële smoothing Double eksponensiële gladstryking gebruik kan word wanneer Theres tendens (hetsy lang termyn of kort termyn), maar daar is geen seisoenaliteit. In wese die metode skep 'n voorspelling deur die kombinasie van eksponensieel stryk skattings van die tendens (helling van 'n reguit lyn) en die vlak (basies, die afsnit van 'n reguit lyn). Twee verskillende gewigte, of glad parameters, word gebruik om hierdie twee komponente by elke keer op te dateer. Die stryk is min of meer gelykstaande aan 'n eenvoudige eksponensiële gladstryking van die datawaardes en die reëlmatige tendens is min of meer gelykstaande aan 'n eenvoudige eksponensiële gladstryking van die eerste verskille. Die prosedure is gelykstaande aan pas 'n ARIMA (0,2,2) model, met geen konstante trek hom af met 'n ARIMA (0,2,2) fiks uitgevoer kan word. (1-B) 2 xt (1theta1B theta2B2) wt. NavigationR - vooruitskatting Ons sal bespreek hoe die metodes werk en hoe om dit te gebruik. Voorspelling pakket oorsig wysig Eksponensiële Smoothing wysig Name AKA: eksponensieel geweeg bewegende gemiddelde (EWMA) Ekwivalent aan ARIMA (0,1,1) model met geen konstante term wat gebruik word vir stryk data vir voorlegging maak voorspellings eenvoudige bewegende gemiddelde: verlede waarnemings geweeg ewe eksponensiële smoothing: ken eksponensieel afneem gewigte met verloop van tyd Formule xt - rou data volgorde ST - uitset van die eksponensiële gladstryking algoritme (skatting van die volgende waarde van x) - glad faktor. 0160lt160160lt1601.Choosing reg geen formele manier van keuse statistiese tegniek kan gebruik word om die waarde van (bv OLS) te optimaliseer hoe groter die afsluiting dit raak te naïef vooruitskatting (dieselfde hawens as oorspronklike reeks met 'n tydperk lag) Double Eksponensiële Smoothing wysig Eenvoudige eksponensiële gladstryking nie goed doen wanneer daar 'n tendens (daar sal altyd vooroordeel wees) Double eksponensiële gladstryking is 'n groep van metodes wat handel oor die probleem Holt-Winters dubbele eksponensiële gladstryking te wysig en vir t gt 1 deur waar is die data glad faktor. 0160lt160160lt1601, en is die tendens glad faktor. 0160lt160160lt1601. Uitset F TM - 'n skatting van die waarde van x op tyd TM, mgt0 gebaseer op die rou data tot tyd t Drie eksponensiële gladstryking wysig in ag neem seisoenale veranderinge sowel as tendense eerste voorgestel deur Holts student, Peter winters, in 1960 Input XT - rou data volgorde van waarnemings t 1601600 L lengte 'n siklus van seisoenale verandering die metode bereken: 'n tendens lyn vir die data seisoenale indekse wat gewig die waardes in die tendens lyn op grond van waar daardie tyd punt val in die siklus van lengte L. s t verteenwoordig die stryk waarde van die konstante deel van tyd t. BT verteenwoordig die volgorde van die beste raming van die lineêre tendens wat bo-op die seisoenale veranderinge CT is die volgorde van seisoenale korreksiefaktore CT is die verwagte persentasie van die voorspel tendens te eniger tyd t mod L in die siklus wat die waarnemings te neem aan inisialiseer die seisoenale indekse c TL daar moet ten minste een volledige siklus in die data die uitset van die algoritme weer as F TM is geskryf wees. 'n skatting van die waarde van x op tyd TM, mgt0 gebaseer op die rou data tot tyd t. Drie eksponensiële gladstryking word gegee deur die formule waar is die data smoothing faktor. 0160lt160160lt1601, is die tendens glad faktor. 0160lt160160lt1601, en is die seisoenale verandering glad faktor. 0160lt160160lt1601. Die algemene formule vir die eerste tendens skatting b 0 is: Die opstel van die aanvanklike ramings vir die seisoenale indekse C I want ek 1,2. L is 'n bietjie meer betrokke. As N is die aantal volledige siklusse teenwoordig is in die data, dan: Let daarop dat 'n j is die gemiddelde waarde van x in die j de siklus van jou data. ETS wysig Herdefiniërende parameters wysig


No comments:

Post a Comment